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Abstract

Based on the control equations for double-porosity media extended from Biot’s theory, the propagation of Love waves is

discussed in this paper. Dispersion equations of Love waves in double porosity medium are obtained by utilizing the usual

assumption of Love waves in elastic solid with the coupling mass coefficient r23 and coupling permeability term k(12) being

equal to zero. The dispersion and attenuation properties of Love waves in double porosity medium are analyzed. The

approximate limit of the Love wave speed is also given. The effects of fracture porosity and fracture permeability on the

behavior of the propagation of Love waves are investigated in detail.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It has been confirmed that in some materials such as most rocks and some acoustic absorbent, there exist
two kinds of main porosities. One is the matrix porosity, also called the storage porosity, occupying a
substantial fraction of the total volume but having a very low permeability. The other is fracture or crack
porosity, occupying very little volume but having a very high permeability. It is evident that the classical Biot
theory [1,2] is not adequate to describe these materials due to the homogeneous assumption of the porosity.
The relevant problems such as the consolidation and dynamic response of double porosity medium have
received more and more attention in recent years. The double porosity theory has been applied in various
fields such as oil extraction, geological exploration and water resources exploitation. The double porosity
model was first proposed by Barrenblatt [3] to express fluid flow in hydrocarbon reservoirs and aquifers.
Warren and Root [4] made an improvement to this model, which allows for coupling between the rock
deformation and the fluid flow. Aifantis [5,6] constructed a general double porosity theory of consolidation in
the framework of mixture theory. Wilson and Aifantis [7] studied the wave propagation in a saturated
fractured porous medium without detailed derivations. Their analysis showed that there exist three
compressional and one rotational waves, in which the first and the third compressional waves are similar to the
fast and slow compressional waves in Biot’s theory, and the second compressional wave arises due to the
presence of fractures. The second compressional wave is dispersive and highly damped. Based on Aifantis’s
double porosity model Bescos and his co-workers [8–11] published a series of papers to investigate the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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dynamic behavior of fissured poroelastic rocks extensively. More explicit and detailed equations of motion
were presented, and the effect of the porosity and permeability parameters on the characteristics of four bulk
waves and Rayleigh waves was discussed in detail. In addition the frequency correction for double porosity
model in high frequency range is also given. A comparative study between double porosity theory and single
porosity model was also presented. According to the mixture theory, Tuncay and Corapcioglu [12,13] use the
volume averaging technique to investigate wave propagation in a fractured porous medium saturated by two
immiscible fluids based on the double-porosity approach. Berryman and Wang [14,15] derived the
phenomenological equations for double porosity media and presented the method to determine the relevant
coefficients.

It is well known that Loves waves play an important role in the seismology, geophysics and earthquake
engineering. At present, the properties of Love waves in single porosity medium have been studied by many
researchers based on the Biot’s theory. Deresiewicz [16,17] discussed Loves waves in a porous layer overlaying
on elastic half-space and in a porous layer between two elastic half-space. Sharma and Gogna [18] considered
Love waves in a slow elastic layer lying on a porous half-space with an initial stress. Wang and Zhang [19]
discussed the propagation of Love waves in a transversely isotropic fluid-saturated porous layered half-spaced
in detail, and gave dispersion and attenuation curves. Liu and De Boer [20] considered Love waves within a
saturated porous layer overlaying a homogeneous, isotropic half-space, and discussed the effects of
permeability parameters on velocity and attenuation.

It has been confirmed that the double porosity and dual permeability model is more suitable to describe the
materials containing two kinds of main pores. The purpose of this paper is to discuss the propagation of Love
waves in a double porosity medium filled with one kind of incompressible fluid. Balance equations and
constitutive relations constructed by Berryman and Wang [15] are adopted. The general analytical method
utilized by Wang and Zhang [19] in their study of the same problem in single porosity medium is followed
here. More complicated characteristic equations of Love waves are obtained. The organization of this paper is
as follows. In Section 2, the controlling equations of double porosity media are reviewed. The dispersion
relations of Love waves in a homogeneous isotropic double porosity layer overlying a homogeneous isotropic
double porosity half-space are derived. In Section 3, based on the dispersion equations derived in Section 2,
numerical calculations are performed. The upper and lower bounds of the Love wave speeds are also given.
The dispersion curves of Love wave speed and group speed are plotted. In Section 4 some conclusions are
given.
2. Basic equations

Consider a double porosity layer with the thickness H overlaying a double porosity half-space as shown in
Fig. 1. X, Y and Z denote the rectangular Cartesian coordinates and Y orients in the direction perpendicular
and outward to the paper. Both the layer and the half-space are supposed to be homogeneous and isotropic
materials. In the following sections, the double porosity medium is composed of the matrix and fracture pores,
and the matrix itself is composed of the solid material and matrix pores.
z

H

half-space

layer
x

Fig. 1. A schematic drawing of the problem.
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2.1. Wave motion equations

Since Love waves belong to an antiplane and shear motion, the nonzero displacement components are only
uy, U ð1Þy and U ð2Þy . Therefore, the equations of motion can be expressed as [15]:
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where uy, U ð1Þy and U ð2Þy are the solid displacement, matrix pore fluid displacement and fracture pore fluid
displacement, respectively, rij and bij are shown in Appendix. The superimposed dot ‘‘ � ’’ denotes the
differentiation with respect to time t. The index i refers to one of the three Cartesian coordinates X, Y, Z, and a
comma before a subscript indicates the derivative with respect to the indicated coordinate direction. p̄ð1Þand
p̄ð2Þ are macroscopic fluid pressures, related to the internal fluid pressures p(1) and p(2) in the matrix pore and
fracture pore respectively, by

p̄ð1Þ ¼ nð1Þfð1Þpð1Þ; p̄ð2Þ ¼ nð2Þpð2Þ, (2)

where n(1) and n(2) are volume fractions of the matrix and fracture pore, respectively, with n(1)+n(2) ¼ 1, f(1) is
the volume fraction of the matrix pore in the matrix and the volume fraction of the matrix pore in the medium
is n(1)f(1). Thus the genaral porosity can be expressed as

f ¼ nð1Þfð1Þ þ nð2Þ. (3)

Let k(11), k(12),k(21),and k(22) are permeability coefficients and t, t(1) and t(2) are overall, matrix and fracture
tortuosity factors, respectively, and Z is the shear viscosity of the fluid. The mass coefficients rij and coupling
viscosity coefficients bij are listed in Appendix.

For the wave propagation, it will often be adequate to assume that the cross-coupling coefficients between
the matrix pore and fracture are equal to zero, as this effect is presumably more important for the long-term
drainage of fluid than it is for the short-term propagation of waves. Considering this approximation, we
assume k(12)

¼ k(21) ¼ 0, r23 ¼ 0 and b23 ¼ 0 in the following discussions.
The constitutive equations for double porosity media can be written in the form
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where Cij s ( i, j ¼ 1, 2, 3 representing three Cartesian coordinates x, y and z, respectively) are drainage elastic
moduli and G is shear modulus, mij s are material parameters, sij s and eij s are the solid stresses and strains,
respectively. w(1) and w(2) are the increments of fluid in the matrix phase and fractures, respectively, given by

wð1Þ ¼ �nð1Þfð1Þr � ðU ð1Þ � uÞ; wð2Þ ¼ �nð2Þr � ðU ð2Þ � uÞ. (5)

The time harmonic variations for the displacements in the solid, fluid in matrix pores and fluid in fractures
may be written as

uy ¼ f ðzÞeiðkx�otÞ; U ð1Þy ¼ g1ðzÞe
iðkx�otÞ; U ð2Þy ¼ g2ðzÞe

iðkx�otÞ. (6)
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Substituting Eq. (4) into Eq. (1) and considering Eqs. (5), (6) and r23 ¼ b23 ¼ 0, the Love wave equation in
double porosity medium can be obtained
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From Eq. (7) we can obtain a second-order partial derivative equation for f(z):
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The general solution of the above equation is
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Hence the solid displacements in the layer and half-space can be, respectively, expressed as

ūy ¼ ðr̄1e
iḡz þ r̄2e

�iḡzÞeiðkx�otÞ; uy ¼ r1e
igzeiðkx�otÞ, (12)

where the superimposed bars ‘‘–’’ refer the quantities of the layer, r̄1; r̄2 and r1 are constants determined by the
boundary conditions.

2.2. Boundary conditions

For Love waves in the present problem, the boundary conditions are:

uy ¼ ūy; z ¼ 0;

szy ¼ 0; z ¼ �H;

szy ¼ s̄zy; z ¼ 0;

uy ¼ 0; z!1:

(13)

To satisfy the last condition, we must have Im(g)40, Re(ḡ) 6¼0 (without loss of generality, it is assumed that
Re(ḡ)40).

2.3. Dispersion equations

Generally the wavenumber in a porous medium can be written as

k ¼ k1ð1þ idÞ, (14)

where k1 is the real part of the wavenumber, connected with the angular frequency o and phase velocity c by
k1 ¼ o/c, and d is the attenuation coefficient. It is convenient to introduce the following contractions:
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Therefore g and ḡ in Eq. (11) can be written in the form
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To satisfy the requirements of Im(g)40 and ReðḡÞ40, we must have
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Eq. (20) is the extension of the propagation of Love waves in the classical layered elastic medium. Generally
doo1 for SH waves, therefore the values of the upper and lower bounds of the Love wave speed c may
approximately take cs and c̄s, respectively.

Substituting Eq. (12) into boundary conditions (13), we obtain the dispersion equation

tanðḡHÞ ¼
Gg
iḠḡ

or tanðk1q̄HÞ ¼
Gq

Ḡq̄
. (21)

We further set:

q̄ ¼ q̄1 þ iq̄2;
Gq

Ḡq̄
¼ aþ ib, (22)

where q̄1, q̄2, a and b are all real.
Then Eq. (21), upon separation of the real and imaginary parts, yields two real equations:

tanðq̄1k1HÞ ¼
a

1� b tanhðq̄2k1HÞ
, (23)

tanhðq̄2k1HÞ ¼
b

1þ a tanðq̄1k1HÞ
. (24)

Eqs. (23) and (24) can be solved by an iterative procedure [19]. Therefore, the dispersion curves (velocity c

and group velocity cpversus k1H) and attenuation curves (Log (d) versus k1H) can be determined. It is noticed
that the fluid pressure (p(1) or p(2)) does not appear in the above equations. The group velocity cp is the
propagation velocity of energy for a dispersive wave, which is given by

cp ¼
do
dk1
¼ cþ k1

dc

dk1
. (25)

It is noted that for an elastic medium, the attenuation coefficient d equals zero, and the elastic medium do
not contain fluid, so the fluid displacement terms, i.e., U(1) and U(2), are all equal to zero. Therefore, the
coupling mass coefficientsr12, r13, r22, r23, r33 all disappear in the motion equation. The only preserving mass
coefficient is r11, which equals to r, the density of the material composing the elastic half-space. Therefore,
in the case that the half-space is elastic medium and the overlying layer is double porosity medium, the
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expression of cs in Eq. (15) can be reduced to cs ¼
ffiffiffiffiffiffiffiffiffi
G=r

p
. Correspondingly, the following condition should be

satisfied:
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p
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Similarly, in the case the overlying layer is elastic medium and the half-space is double porosity medium, we
have
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When the layer and half-space are all elastic medium, Eqs. (18) and (19) are, respectively, reduced to
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3. Numerical results and discussions

Numerical calculations are performed for three situations: (a) an elastic layer overlays a double porosity
half-space; (b) a double porosity layer overlays an elastic half-space; and (c) a double porosity layer overlays a
double porosity half-space.

3.1. An elastic layer overlays a double porosity half-space.

The shear modulus of the layer and the mass density are taken to be

Ḡ ¼ 3GPa; r̄s ¼ 3000 kg=m3 and c̄s ¼

ffiffiffiffiffiffiffiffiffiffiffi
Ḡ=r̄s

q
¼ 1000m=s: (30)

The material constants of the double porosity half-space used in this paper are taken to

G ¼ 8GPa; nð1Þ ¼ 0:9892; nð2Þ ¼ 0:0108

fð1Þ ¼ 0:1838; f ¼ 0:1926

kð11Þ ¼ 10�16 m2; kð22Þ ¼ 10�12 m2

rf ¼ 1000 kg=m3; rs ¼ 3000 kg=m3; Z ¼ 10�3 Pa s ð31Þ

For the above double porosity medium, the limiting value of wave velocity cs can be calculated numerically
and the curve of cs as a function of f is plotted in Fig. 2. It is seen from Fig. 2 that cs increases as the frequency
increases and the variation of cs is very gentle when the frequency is less than 200Hz or larger than 4000Hz.
While the frequency is in the range about 300–4000Hz, the variation of cs is dramatic. When the frequency
tends to zero and infinity, the limiting values of cs are, respectively, given by

cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

r11 þ 2r12 þ r22 þ 2r13 þ r33

s
¼ 1627:98m=s;

cs1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gr22r33

r11r22r33 � r212r33 � r213r22

s
¼ 1703:65m=s: ð32Þ

So the phase velocity is in the range 1000m/sococs(f).
The thickness of the elastic layer is taken as H ¼ 10, 1 and 0.1m, respectively. The dispersion curves (c and

cp versus k1H) and attenuation curves are, respectively, illustrated in Figs. 3(a) and (b). (In the above and the
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Fig. 3. (a) Wave speed versus k1H at different thickness of the layer for case (a). The group speed verse k1H is plotted according to Eq. (25)

for H ¼ 10. The material constants of the elastic layer and the double porosity half-space are given in Eqs. (30) and (31), respectively.

(b) Attenuation versus k1H at different thickness of the layer for case (a). The material constants are the same as in panel (a).
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following figures, we only plot the first-order mode of Love waves.) It follows from figures that the velocity
and attenuation of Love waves decreases rapidly at first and then slowly as k1H increases, while the group
velocity cp decreases first and then increases as k1H increases. Thus we can infer the group velocity cp must
reach a minimum value at some critical frequency, which varies with the thickness of the layer. For the case
considered, values of the critical frequency are approximate 75Hz for H ¼ 10, 750Hz for H ¼ 1 and 7500Hz
for H ¼ 0.1. At the critical frequency the energy of Love wave propagates most slowly. It is also shown in the
figures that the thickness of the layer almost has no influence on phase velocity, but has evident influence on
the attenuation. For the same k1H, the thinner the elastic layer is, the larger the attenuation is.

In order to examine the effect of fracture permeability on the wave speed and attenuation, we take k(22) as
10�11, 10�12, 10�13 and 10�16m2, respectively. H ¼ 10m, n(2) ¼ 0.0108, and other material properties also
keep constants. The calculation results are shown in Figs. 4(a) and (b). It is shown that the fracture
permeability k(22) has a small influence on Love wave speed in the low frequency range. At the same k1H, the
smaller k(22) is, the bigger the phase velocity is. In high frequency range, for example k1H,46 in Fig. 4(a), k(22)
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material constants are the same as in Fig. 3(a). (b) Attenuation versus k1H at different fracture permeability (k(22)) parameters of the
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Fig. 5. (a) Wave speed versus k1H at different fracture porosity (n(2)) parameters for case (a). The material constants are the same as in

Fig. 3(a). (b) Attenuation versus k1H at different fracture porosity (n(2)) parameters for case (a). The material constants are the same as in

Fig. 3(a).
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almost has no effect on phase velocity. Otherwise fracture permeability k(22) has relatively evident effect on the
attenuation. At the same k1H, the smaller k(22) is, the bigger the attenuation is.

Taking H ¼ 10m, k(22) ¼ 10�12m2 and n(2) as 0, 0.001, 0.0108 and 0.0178, respectively, while the general
porosity f ¼ 0.1926 remains invariable, we discuss the effect of fracture porosity on the propagation of Love
waves. Calculation results are shown in Figs. 5(a) and (b). It follows from these figures that the fracture
porosity almost has no influence on the wave speed. The attenuation varies significantly with n(2) in low
frequency range. For the same k1H, the larger n(2) is, the larger the attenuation is. It can also be observed that
the Love wave speed for single porosity medium (n(2) ¼ 0) is generally higher than the corresponding one for
double porosity medium, while the attenuation for single porosity medium (n(2) ¼ 0) is generally lower than
the corresponding one for double porosity medium and the difference is more evident as k1H tend to zero.
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3.2. A double porosity layer overlays an elastic half-space

The material constants of the elastic half-space are taken to be

G ¼ 12GPa; rs ¼ 3000 kg=m3 and cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
G=rs

p
¼ 2000m=s: (33)

The material constants of the layer are listed in Eq. (31). So the phase velocity is in the range
c̄sðf Þoco2000m=s; where c̄s is the same as cs shown in Fig. 2.

Similar to case (a), we also discuss the effect of the thickness of the layer H, fracture permeability k(22) and
fracture porosity n(2) on Love wave propagation. Calculation results are shown, respectively, in Figs. 6–8.

It is shown in Figs. 6(a) and (b) that the velocity of Love waves and the group speed decrease rapidly at first
and then slowly as k1H increases. There is also a minimum value for group velocity cp at some critical
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Fig. 6. (a) Wave speed versus k1H at different thickness of the layer for case (b). The group speed verses k1H is also plotted according to

Eq. (25) for H ¼ 10. The material constants of the double porosity layer and the elastic half-space are given in Eqs. (31) and (33),

respectively. (b) Attenuation versus k1H at different thickness of the layer for case (b). The material constants are the same as in panel (a).
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Fig. 7. (a) Wave speed versus k1H at different fracture permeability (k(22)) parameters of the double porosity layer for case (b). The

material constants are the same as in Fig. 6(a). (b) Attenuation versus k1H at different fracture permeability (k(22)) parameters of the

double porosity layer for case (b). The material constants are the same as in Fig. 6(a).
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Fig. 8. (a) Wave speed versus k1H at different fracture porosity (n(2)) parameters of the double porosity layer for case (b). The material

constants are the same as in Fig. 6(a). (b) Attenuation versus k1H at different fracture porosity (n(2)) parameters of the double porosity

layer for case (b). The material constants are the same as in Fig. 6(a).
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frequency. The thickness H of the layer almost has no effect on velocity in low frequency range, but has small
influence on velocity in high frequency range. For the same k1H, the thinner the layer is, the larger the velocity
is. The attenuation increases rapidly at first and then slowly as k1H increases. For the same k1H, the thinner
the double porosity layer is, the larger the attenuation is. Comparing Figs. 3(b) and (b), it is found that the
variation of attenuation with k1H are opposite in the two cases.

It follows from Figs. 7(a) and (b) that the fracture permeability k(22) almost has no influence on Love wave
speed in all the frequency range considered, while the attenuation varies greatly with k(22). At the same k1H,
the bigger the fracture permeability k(22) is, the larger the attenuation is.

From Figs. 8(a) and (b), we can see that the Love wave speed almost remains invariable as fracture porosity
n(2) changes, while the attenuation varies greatly with n(2), especially in high frequency range. The larger the
fracture porosity is, the larger the attenuation is. It can also be seen from figures that in this case the Love
wave speed for single porosity medium (n(2) ¼ 0) is generally higher than the corresponding one for double
porosity medium, which is similar to case (a). The attenuation for single porosity medium (n(2) ¼ 0) is
generally lower than the corresponding one for double porosity medium and the difference is more evident as
the frequency increases.

3.3. A double porosity layer overlays a double porosity half-space

The material constants of the half-space are taken to be:

G ¼ 12GPa; nð1Þ ¼ 0:9905; nð2Þ ¼ 0:0095; fð1Þ ¼ 0:1848; f ¼ 0:15,

kð11Þ ¼ 10�16 m2; kð22Þ ¼ 10�12 m2,

rf ¼ 1000 kg=m3; rs ¼ 3000 kg=m3; Z ¼ 10�3 Pa s: ð34Þ

The material constants of the overlying layer are taken to be the same as Eq. (31). In this case c̄s0 ¼

1627:98m=s; c̄s1 ¼ 1703:65m=s; and cs0 ¼ 2056:95m=s; cs1 ¼ 2180:95m=s: Since both the layer and the
half-space are double porosity medium, here we only discuss the effect of the thickness of the layer on phase
velocity and attenuation. Similar to the above cases, the thickness of the layer is taken as H ¼ 10, 1 and 0.1m,
respectively. Fig. 9(a) shows the variation of phase velocity with frequency. As expected, the phase velocity
decreases as the frequency increases. It is shown that contrasting the above two cases, the thickness of the layer
obviously affect the Love wave speed, especially in low frequency range. At the same frequency, the Love wave
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Fig. 9. (a) Wave speed versus k1H at different thickness of the layer for case (c). The group speed verse k1H is also plotted according to

Eq. (25) for H ¼ 10. The material constants of the double porosity layer and the double porosity half-space are given in Eqs. (31) and (34),

respectively. (b) Attenuation versus k1H at different thickness of the layer for case (c). The material constants are the same as in Fig. 9(a).
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Fig. 10. (a) Comparison of the Love wave speed for double porosity layer/half-space with that for single-porosity layer/half-space;

(b) comparison of the attenuation of Love waves for double porosity layer/half-space with that for single-porosity layer/half-space.
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speed increases as the thickness of the layer H decreases. In addition, group speeds are also calculated. It is
found that just like case (a) and (b), there is also a critical frequency at which the group speed reaches a
minimum value. Attenuation of Love waves as a function of k1H is shown in Fig. 9(b). It follows from the
figure that the attenuation increases as the frequency increases, which is somewhat similar to the case (b). At
the same frequency, the thicker the layer is, the lower the attenuation is.

Numerical calculations are also performed when the layer and the half-space are all fluid-saturated single
porosity medium by taking the fracture porosity n(2) ¼ 0 (the general porosity remains invariable). H ¼ 10 and
other parameters remain constants. Calculation results are shown in Figs. 10(a) and (b). It is found that in
general the Love wave speed for single-porosity medium is higher than that for double porosity medium while
the attenuation of Love waves for single-porosity medium is lower than that for double porosity medium. The
difference between two cases is more evident as the frequency increases.
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4. Summary and conclusions

In the present paper, a theoretical analysis has been developed to study the propagation of Love waves in a
double porosity medium. The phase velocity and dispersion equation are derived. Three cases are discussed in
detail with numerical examples. It is found that the fluid pressure p(1) and p(2) do not appear in the dispersion
equation. Therefore, the values of the fluid pressure have no influence on the propagation of Love waves in

double porosity media. The approximate limits of Love waves are given, i.e., c̄s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
ococs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
.

Generally Love waves in a double porosity medium are highly dispersive, especially in low frequency range,
and weakly damped (d is less than 10�3 for the three cases considered above). Variations of the limiting value
of the Love wave speed in a double porosity medium with frequency (cs versus f) are very gentle when the
frequency is less than 200Hz or larger than 4000Hz. The limiting values of cs in low and high frequency range
are, respectively, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G

r11 þ 2r12 þ r22 þ 2r13 þ r33

s
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gr22r33

r11r22r33 � r212r33 � r213r22

s
.

Numerical calculations reveal that the fracture permeability, fracture porosity and the thickness of the layer
have important influence on the attenuation but only have very little influence on the phase velocity for case
(a) and (b). It is found that the Love wave speed for single-porosity layer/half-space is higher than that for
double porosity medium while the attenuation of Love waves for single-porosity medium is lower than that for
double porosity layer/half-space in general and the difference between two cases is more evident as the
frequency increases. Comparing the case (a) and (b), we also found that the variation of attenuation with k1H

is opposite. While for case (c) the thickness of the layer has significant influence on both the wave speed and
the attenuation. Thinner the layer is, the larger the wave speed and the attenuation are. It is also found that
there exists a critical frequency at which the group velocity reaches a minimum value, and this critical
frequency is dependent on the thickness of the layer.
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Appendix

The mass coefficients rij and the coupling viscosity coefficients bij are given as follows:

r11 ¼ ð1� fÞrs þ ðt� 1Þfrf ,

r12 ¼
½ðtð2Þ � 1Þnð2Þ � ðtð1Þ � 1Þnð1Þfð1Þ � ðt� 1Þf�rf

2
,

r13 ¼
½ðtð1Þ � 1Þnð1Þfð1Þ � ðtð2Þ � 1Þnð2Þ � ðt� 1Þf�rf

2
,

r22 ¼ tð1Þnð1Þfð1Þrf ,

r23 ¼
½ðt� 1Þf� ðtð1Þ � 1Þnð1Þfð1Þ � ðtð2Þ � 1Þnð2Þ�rf

2
,

r33 ¼ tð2Þnð2Þrf ,
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b12 ¼
Zð1� tð2ÞÞfð1Þ½nð1Þfð1Þkð22Þ � nð2Þkð21Þ�rf

kð11Þkð22Þ � kð12Þkð21Þ
,

b13 ¼
Zðnð2ÞÞ2

kð22Þ
,

b23 ¼
Znð1Þnð2Þfð1Þkð12Þ

kð11Þkð22Þ � kð12Þkð21Þ
.
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